
0

Lfl

Nv
NTAININC 3RIDGE-CONNECTED AND BICONNECTED

COMPONENTS ON-LINE

Jeffery Westbrook
Robert E. Tarjan

CS-TR-228-8902% E r '.E 4cl-
August 1989

NOV 9 91989

,,,- .ooo/_- 2uIt.

I "D , fO l i rel~le

BEST
AVAILABLE COPY 8g Ii 21 162



Maintaining Bridge-Connected and Biconnected Components On-
linet

Jeffery Westbrook ,

Department of Computer Science U: C

Princeton University ;J " -
Princeton, New Jersey 08544

Robert E. Tarjan y

Department of Computer Science L, I
Princeton University ...

Princeton. New Jersey 08544 ,
and

AT&T Bell Laboratories D t -
Murray Hill, New Jersey 07974

If

ABSTRACT . ... . .. . .

We consider the twin problems of maintaining the bridge-connected
components and the biconnected components of a dynamic undirected
graph. The allowed changes to the graph are vertex and edge insertions.
We give an algorithm for each problem. With simple data structures, each
algorithm runs in O(nlogn+m) time, where n is the number of vertices
and m is the number of operations. We develop a modified version of the
dynamic trees of Sleator and Tarjan that is suitable for efficient recursive
algorithms, and use it to reduce the running time of the algorithms for
both problems to O(ma(m,n)), where a is a functional inverse of
Ackermann's function. This time bound is optimal. All of the algorithms
use 0 (n) space.

1. Introduction

Three natural and important equivalence relations on the constituents of an

undirected graph G=(V,E) are defined by its connected, bridge-connected, and bicon-

nected components. Let V1 ,V 2 , • • • ,Vk be the partition of V such that two vertices are in

the same part of the partition if and only if there is a path connecting them. Let Gi be the

subgraph of G consisting of Vi and the edges of E incident to the vertices of Vi. The sub-

graphs Gi, 1 <i <k, form the connected components, abbreviated components, of G.

Similarly, let El,E 2 , "",Ek be the partition of E such that two edges are in the same

t Research partially supported by Nationaj Science Fotmdation Grnt DCR-9605962 and Office of Naval Reserch
Contraci N00014-87-K-047.



-2-

part of the partition if and only if they are contained in a common simple cycle. The

biconnected components, or blocks, are the subgraphs of G formed by the edges of Ei and

the vertices of V that are endpoints of these edges. A vertex appearing in more than one

block is called an articulation point, and its removal disconnects G. There is either no

block or one block containing any given pair of vertices. An edge contained in no cycle

is in a block by itself. Such an edge is called a bridge, and its removal disconnects the

graph. The bridge-connected components, or bridge-blocks, of G are the components of

the graph formed by deleting all the bridges. The bridge-blocks partition V into

equivalence classes such that two vertices are in the same class if and only if there is a

(not necessarily simple) cycle of G containing both of them. Figure 1 shows an

undirected graph along with its blocks and bridge-blocks.

59 8

a)

3 4 58

b)2

00

Figure 1: a) Undirected graph G. b) Bridge-blocks of G.
c) Blocks of (j. Multiply-appearing vertices are articulation
points.



-3-

The problems of finding the components, blocks, and bridge-blocks of a fixed graph

are well-understood. Hopcroft and Tarjan [9] and Tarjan [19] give sequential algorithms

that run in time 0 (n+m) where n = I VI and rn = El. Logarithmic-time parallel algo-

rithms for finding components, bridge-blocks, and blocks are given in references [1] and

[221 (see also the survey paper I l l]).

The problem of answering queries about edEe and vertex membership in the com-

ponents of a dynamic graph, i.e., a graph that is changing on-line, has been addressed in

references [3,5,7,12]. Even and Shiloach [5] consider the component problem for a

graph undergoing edge deletions. They give algorithms with constant query time,

O(nlogn) total update time in the case that G is a tree or forest, and 0(mn) update time

for general G, where rn and n ar. the numbers of edges and vertices, respectively, in the

initial graph. Reif [12] gives an algorithm for the same problem that runs in time

o (n g + n logn) when given an initial graph embedded in a surface of genus g. Freder-

ickson [7] gives an algorithm that performs queries in constant time and edge insertions

and deletions in time 0(-n.-), where mi is the number of edges in G at the time of the ith

update. Even and Shiloach, and Reif, also observe that if only edge insertions are

allowed, the component probiem can be solved by straightforward application of a fast

disjoint set union algorithm. The disjoint set union problem is to maintain a partition of

n elements while performing an intermixed sequence of two operations: find (x), which

returns the name of the set containing element x; and union (A,B), wh..u- combines the

sets named A and B into a new set named A. The fastest algorithms for this problem run

in 0(a(m,n)) amortized time per operationt and 0 (n) space, where m is the lenglh 9f

the sequence, n is the total number of elements, and (x is a functional inverse of

Ackermann's function [16,20].

In this paper we study the problems of answering queries about the blocks or

bridge-blocks of a dynamic graph. We allow two on-line graph update operations to be

performed on an initially null gfaph G:

t The amortized cost of an operation is the cost of a worst-case scquence of operations divided
by the number of operations in the scqucncc. See 1171 for a gcncral discussion of amortization.



-4-

make vertex (A): Add a new vertex with no incident edges to G. Label by "A" the
bridge-block formed by the new vertex. Return the name of the new vertex; the calling
program must use this name to refer to the new vertex in subsequent operations. (The
name is actually a pointer into the data structure maintained by the algorithm.)

insert edge (u,v,A): Insert a new edge between the vertices named u and v. Label by "A"
any new bridge-block or block that results from the edge insertion.

In the bridge-block problem we allow the following query:

find block (u): Return the label of the bridge-block containing the vertex named u.

Similarly, in the block problem we allow the following query:

find block (u,v): Return the label of the block, if any. containing the pair of vertices
{u,v}.

We also consider a restricted variant of the problem in which we are given an initially

connected graph Go = (V0 ,E0 ). We allow O(1Eo 1) preprocessing time, and then pro-

cess on-line a sequence of intermixed queries and edge insertions. In this variant, the

make vertex operation is not allowed Our algorithms do not explicitly maintain the edge

set, but if the endpoints of an edge are known, then find block can be used to determine

which block contains the edge.

The block and bridge-block problems are natural problems to consider in the gen-

eral study of on-line graph algorithms, a study that has wide applications to networks,

CAD/CAM, and distributed computing. They appear as subproblems of other on-line

graph problems, such as incremental planarity testing [4]. The incremental planarity test-

ing problem is to maintain a representation of a planar graph as edges are being added,

and to determine the first edge addition that makes the graph nonplanar. Maintaining the

blocks of a dynamic graph also arises in the implementation of efficient search strategies

for logic programming [Graeme Port, private communication, 1988]. We know of no

previous algorithms for the block or bridge-block problems that run in sublinear time per

operation.

This paper is organized as follows. In Section 2 we develop a simple algorithm for

the bridge-block problem that runs in 0(nlogn +m) total time and uses 0(n) space,



-5-

where n is Lhe number of vertices added to the initially null graph and m is the number of

operations. In Section 3 we give a similar algorithm for the block problem that also runs

in 0(nlogn +r,) time and 0(n) space. In Sections 4-7 we decrease the total running

time of the bridge-block and block algorithms to 0(mt(m,n)). To achieve this bound

we introduce link/condense trees, a modified version of the dynamic trees of Sleator and

Tarjan [14,15], and apply a fairly delicate analysis. The link/condense trees support con-

densing of adjac ,.nt nodes, and two such trees can be linked together in amortized time

O(logk), where k is the size of the smaller tree. Section 4 describes the data structure as it

applies to the bridge-block problem and Section 5 contains the amortized analysis of the

link/condense tree operations. Section 6 describes the modifications needed to apt1y

link/condense trees to the block problem, and Section 7 contains additional analysis.

Finally, Section 8 contains a simple reduction from the disjoint set union problem to the

block and bridge-block problems. This allows us to apply the known lower bounds for

set union to these two prollems. Our results are summarized in the following table:

Initially connected G Initially null G

Bridge-blocks 0 (moa(m, n)) e(ma(m,n))

Blocks 8(m ae(m, n)) E(ma (m, n))

The O(ot(m,n)) upper bound for the on-line bridge-block and block problems is

somewhat surprising, since both thtse problems differ fundamentally from the on-line

connected component problem that shares this bound. In the latter, a single edge inser-

tion can combine at most two components into one. A single edge insertion, however,

can create a cycle in the graph that might combine as many as 8(n) blocks or bridge-

blocks into one. This fact seems to make the maintenance of blocks and bridge-blocks

under both edge insertion and edge deletion quite difficult. By simply alternating edge

insertions with edge deletions, we can generate a sequence of operations that at every

step changes the number of blocks in the graph by 8(n).

To conclude this section, we note that although find block as defined above returns

only a label, the algorithms presented below can be extended to return other information

about the blocks or bridge-blocks, such as an edge or vertex of maxim'um weight, with no

loss in efficiency. In general, we can maintain any data that can be updated in constant



-6-

time when two blocks or bridge-blocks are combined into one. If we are willing to

increase the space used to 0(m), we can also list the edges or vertices in a block or

bridge-block in time 0 (at(m,n) + k), where k is the number of items listed.

2. Maintaining Bridge-Blocks On-Line

The bridge-blocks and bridges of a connected graph have a natural tree. structure

that we call the bridge-block tree. The collection of bridge-block trees given by the

components of a graph G = (VE) is called the bridge-block forest, or BBF. The nodes

in a bridge-block tree are of two types: square nodes, which represent the vertices of G;

and round nodes, which represent the bridge-blocks. If r is a round node then label(r)

denotes the label of the corresponding bridge-block. Two round nodes are connected by

a trzc edge whenever a bridge connects the corresponding two bridge-blocks. If vertex v

is contained in bridge-block A then the square node that represents v is connected by a

tree edge to the round node that represents A. Every square node is a leaf. Each bridge-

block tree is rooted at an arbitrarily selected round node. We denote by parent(x) the

parent of tree node x. Given the BBF for G, the query find block (u) can be answered by

computing label (parent (u)). (In general, we let the vertex name, here u, refer to both

the vertex in the graph and to its square node representative in the bridge-block tree.)

Figure 2a shows the BBF for the graph of Figure 1.

The effect of an insert edge (u,v,A) operation on the bridge-block forest depends on

whether u and v are in the same bridge-block, different bridge-blocks but the same com-

ponent, or different components. In the first case the bridge-block structure of the graph,

and consequently the BBF, is unaffected. In the remaining two cases, however, the

bridge-block structure is affected in opposite ways.

If u and v are in different components of the graph then the inserted edge connects

the two components by creating a bridge between them. One of the two corresponding

bridge-block trees, say the tree containing u, is rerooted at parent (u), and then parent (u)

is made a child of parent (v). This process, called a comr)onent link, can occur at most

n-I times, after which the graph is connected.

On the other hand, if u and v are in the same component but different bridge-blocks,

the inserted edge creates a new cycle that reduces the number of bridge-blocks in the

component. The round nodes on the path connecting u and v in the corresponding tree



-7-

must be replaced by a single round node. Every node previously adjacent to one of the

round nodes on the path becomes adjacent to the new single round node. This process is

called path condensation. After at most n-1 condensations, the graph has only a single

bridge-block. Figure 2b gives examples of both cases of edge insertion.

1B 5 6 7 a 9 E
A D 3 4

(a) (b)
Figure 2: a) Bridge-block forest of G. b) BBF after per-

forming insert edge (1,5,F) and insert edge (9,11,E)

To implement the bridge-block operations, the BBF is explicitly maintained with

data structure that supports the following functions.

Maketree (A : label or null value):
Create a rcw tree consisting of a single node. If A is null, make a square node; oth-
erwise, make a round node labeled A; Return a pointer to the new node.

Link (x,y :square or round nodes):
Link two trees together by first making x the root of its tree (this is called an ever-
sion), and then making x a child of y.

Findpath (u, v: square nodes):
Find the tree path P between but not including square nodes u and v. If u and v are
the same node, return parent (u).

Condensepath (P : path; A: label):
Perform path condensation on P and label by A the the resultant single node F.



-8-

With these functions, we implement the bridge-block operations as follows:

make vertex (A ):
Let u = Maketree (null). Perform Link (u,Maketree (A)). Return u (to be used
by the calling program as the name of the new vertex).

find block (u):

Return label (Findpath (u,u)).

insert edge (u,v,A):
(1) If u and v are in the same component then execute

Condensepath (Findpath (u,v),A) and terminate.
(2) If u and v are in different components, determine which is in the smaller com-

ponent. Assume u is. Let x = Findpath (u.u) and y = Findpath (v,v).
(3) Execute Link (x,y).

In the insert edge procedure we use an on-line component maintenance subroutine

to determine if two vertices are in the same component of G and to determine the size of

a component. This subroutine is a straightforward application of a fast disjoint set union

algorithm [211. Appropriate calls to the update functions of this subroutine must be

made when making a new vertex or performing a component link.

I iL ,L,:Z -,s-uc!ure i: b-ilt using c,1.dc sible nodes A condensible node x con-

sists of a block of storage, N(x), containing an arbitrary but fixed collection of fields, and

a set of subnodes, S(x). The subnode sets are maintained with a fast disjoint set union

algorithm [21]. The name of set S(x) is simply N(x). A condensible node is initialized

with one subnode. To make a pointer p to node x, we store in p the name of some sub-

node s r S (x). Given such a pointer p, a pointer step consists of accessing N(x) by per-

forming find (p). Two nodes x and y can be condensed into a single node z by the follow-

ing procedure: create a new storage block N (z); let S(z) = union(S (x),S (y)); update

appropriately the fields of N(z) using the fields of N(x) and N(y); and discard N(x) and

N(y). The union of the two subnode sets suffices to make all pointers to x and y become

pointers to z. Note that condensation destroys x and y. If a data structure initially con-

tains n condensible nodes, then any sequence of m pointer steps and condensations runs

in worst-case time 0 (m t(m,n)), and the data structure uses 0 (n) space.



-9-

For each vertex v in the graph we store a pointer to its condensible node representa-

tive in the data structure. For a node x, N(x) contains a parent pointer and label field. If

x is a square node, the label field is null; if x is a round node, the label field holds a

bridge-block label. For any node x, parent (x) is computed by a pointer step using the

parent pointer. The four tree functions take as arguments pointers to condensible nodes.

To perform Link (x,y), the tree containing x is evened by walking up from x to the

tree root, reversing the direction of all parent pointers along the padi. The number of

pointer steps is the initial depth of x, which is at most the size of the tree. After the even,

a pointer to y is stored in the parent field of x. Since x and y are passed in the form of

pointers, this is actually implemented by storing the value of y in the parent field of the

storage block returned by find (x). This requires one additional pointer step.

The Findpath (u,v) algorithm proceeds by walking up -z tree simultaneously from

u and from v in lock-step, until the paths from u and v intersect at their nearest common

ancestor. The path P is returned as a list of nodes (not in order along the path), with the

nearest common ancestor at the end. The number of pointer steps required is at most

21 P 1. Let z be the parent of the nearest common ancestor. To perform

Condensepath (P,A), P is condensed into a single node i. Node T is labeled by A and

made a child of z. The number of notc condensations is I P -I

Lemma 1:

In any sequence of operations there are 0 (n) pointer steps during condensing edge

insertions.

Proof. Suppose a path P is being condensed. To generate P, 0 (IPI) poister steps are

required, but I P I - 1 round nodes are condensed. After n -1 condensations the graph is

bridge-connected. 0

Lemma 2:

The total number of pointer steps during Link operations is 0 (n logn).

Proof. The number of square nodes in a bridge-block tree is at least the number of round

nodes. Hence the cost of an evert in a tree of k square nodes is 8(k). Since we always

evert the smaller tree, we arrive at the following recursive upper bound on the total

number of pointer steps, T(n), needed to combine n components into one, where c is a

sufficiently large constant.



-10-

T(n) < max1 S k n /2 {T(k) + T(n -k) + ck)

!t is well-known that this recurrence has the solution T(n) = 0 (n logn). 0]

Theorem 1:

Given an initially null graph Go, a sequence of m = f)(n) find block, make vertex,

and insert edge operations can be processed in 0(nlogn+m) time and 0(n) space,

where n is the number of vertices inserted.

Proof. First, we note that the total time spent in the on-line components subroutine is

0 (mc(x(m,n)) = 0 (n logn + m). Next, we bound the total number of pointer steps and

condensations that occur during processing of an input sequence. There is 4t least one

pointer step per bridge-block operation. Let k be the number of pointer steps and node

condensations occurring during path condensation and component linking. From lemmas

1 and 2, k = 0 (nlogn). The amortized cost of a pointer step or node condensation is

0 (t(k+m,n)). Thus the total running time is O ((k+m)c(k+m,n)). Since C(m, n)= I for

m > nloglogn [18], this expression is 0(nlogn+m). The space bound follows from the

properties of condensible nodes and the observation that the number of square nodes

bounds the number of round nodes. [

Corollary:

Given an initially connected graph Go and O(lE01) preprocessing time, a

sequence of m = U(n) find block and insert edge operations can be processed in

O(ma(m,n)) time.

Proof. The bridge-blocks and initial BBF of Go can be found in time O(E 0 1) using

one of the algorithms in references [9,19]. By lemma 1, the total number of pointer steps

and condensations is 0 (m), giving the bound. 0

3. Maintaining Blocks On-line

The problem of maintaining blocks on-line is similar to that of maintaining bridge-

blocks, and the algorithms are almost identical. We represent each block of G by a round

node and each vertex by a square node. The square nodes now play a more important

role, however, and the block forest, or BF, is different in character from the bridge-block



-ll-

forest. Whenever a vertex of G belongs to a given block, we create a tree edge between

the corresponding square and round nodes in the BF. There are no other edges; no two

square nodes and no two round nodes are adjacent Since a single vertex can be an arti-

culation point joining many blocks, and a block may be adjacent to many articulation

points, the block tree generally has internal square nodes. If {u,v) is a vertex pair that

appears in block P, then in the block tree either u and v are both children of B or one is a

parent of B and one is a child of B. Thc query find block(u,v) can be answered by

returning the label of the single round node that lies on the tree path between u and v.

Figure 3a gives the block forest for the graph of Figure 1.

A make vertex(u) operation adds a single unconnected square node to the block

forest. An insert edge (u,v,A) operation can have two opposite effects: either it links two

components, increasing the number of blocks, or it creates a new cycle, possibly decreas-

ing the number of blocks. If a component link occurs, then the inserted bridge forms a

new block labeled by A. One of the two block trees, say the tree containing u, is rerooted

at u; u becomes a child of A, and A becomes a child of v.

If the inserted edge creates a new cycle then path condensation occurs. In a block

tree the path between u and v consists of alternating square and round nodes. The round

nodes on the path are condensed into a single round node, i. The square nodes on the

path may be ignored, since condensation of the round nodes ensures that these square

nodes become children of i. Let w be the nearest common ancestor of the path nodes.

(Recall that this implies that w is part of the path.) If w is a round node, then becomes a

child of the parent of w. If w is a square node, it is not affected by condensation, and T

becomes a child of w. Examples of a linking edge insertion and a condensing edge inser-

tion with a square nearest common ancestor are given in Figure 3b.

We maintain the block forest with the same condensible node data structure used for

the bridge-block problem. The Link, Findpath, and Condensepath functions described

in the previous section can be modified in a straightforward way to perform the block

tree transformations described above. With these functions, the block operations are

implemented as follows:



-:2-

CG) (b

B DBD

23 67 f2_ 6 7

A E F

1 88 9 2 3

(a) (b)
Figure 3: a) Block forest of G. b) BF after performing
inser: edge (8,10,H) and in.7ert edge (5,11,1).

make vertex (A):

Return Maketree (null ). (This does not create a block, so label A ignored.)

find block (u,v):
Return label (Findpath (u,v)).

insert edge (u, v,A):

(1) If u and v ,re in the same component then execute
Condcnsepath (Findpath (u,v),A) and terminate.

(2) If u and v are in different components, determine which is in the smaller com-
ponent. Assume u is.

(3) Let = Maketree (A).

(4) Execute Link fu, P). Execute Link (P,v).

The lemmas and analysis given for the bridge-block problem can be easily adapted

to the block problem.

Theorem 2:

The on-line block problem can be solved in 0(nlogn+m) time and 0 (n) space.

Corollary:

If the graph is initially connected, the on-line block problem can be solved in

O(max(m,n)) time.



- 13-

4. A Data Structure for an Optimal Bridge-Block Algorithm

In this section we replace the data structure used in section 2 with a more sophisti-

cated data structure called the link/condense tree. We obseive that in the bridge-block

algorithm of section 2 most of the work occurs in processing component links. The

link/condense tree is designed to perform everts efficiently, and hence speed component

links, without increasing the time to ly:rform Findpath and Condensepath. By maintain-

ing the bridge-block forest with link/condense trees, any sequence of n-1 component

links can be performed in O (not(m,n)) time, and it remains the case that n-1 path con-

densations take time 0 (ncz(m,n)).

The link/condense tree is derived from the dynamic tree data structure of Sleator

and Tarjan [14,15]. For a full description of dynamic trees the reader should consult

the,'" papers. Below we will consider mainly the new aspects of link/condense trees. The

following summary description of dynamic trees is taken from [15, p. 678]. (See Figure

4.)

We represent each dynamic tree T by a virtual tree V containing the same
nodes as T but having a different structure. Each node of V has a left child
and a right child, either or both of which may be a null, and zero or more
middle children. We call an edge joining a middle child to its parent
dashed and all other edges solid. Thus the virtual tree consists of a hierar-
chy of binary trees, which we call solid subtrees, interconnected by
dashed edges. The relationship between T and V is that the parent in T of
a node v is the symmetric-order successor of v in its so1,: subtree in V,
unless v is last in its solid subtree, in which case its par.. nt in T is the
parent of the root of its solid subtree in V. In other words, each solid sub-
tree in V corresponds to a path in T, with symmetric order in the solid sub-
tree corresponding to linear order along the path, from first vertex to last
vertex.

The link/condense virtual tree is built with condensible nodes. Let v be a tree node

contained in solid subtree U. N (v) contains pointers to the following nodes: vparent (v),

the parent of v in the virtual tree V; left (v) and right (v), the left and right children of v in

the solid subtree; and pred(v) and succ (v), the symmetric order predecessor and succes-

sor of v in the solid subtree. In general, succ (v) points to the parent of v in T. In addi-

tion, N (v) contains pointers leftmost (v) and rightmost (v). These are used only when v is

the root of a solid subtree, at which time they point to the leftmost and rightmost nodes in

this solid subtree. If t is the root of U and I = leftmost (t), r = rightmost (t), then

pred (1) = succ (r) = t.



-14-

a

b

C

e

h
kI

r S

t

U

V

Figure 4a: A dynamic tree: the actual tree. Dashed edges
separate paths corresponding to solid subtrees in the virtual
tree [151.

As a way to implement eversion efficiently, we allow a node v to occasionally enter

reversed state, in which case the meanings of left(v) and right(v), leftmost(v) and

rightmost (v), and pred(v) and succ(v) are reversed. (That is, left (v) points to the right

child, right (v) points to the left child, etcetera.) To implement reversal, N(v) contains a

bit reverse (v). The reversal state of node v is given by the exclusive-or of the reverse

values stored in v and all its ancestors in the solid subtree.

The solid subtrees are built using splay trees [15]. A splay at node x moves x to the

root of its solid subtree by applying a standard binary tree rotation to every edge along

the path from x to the root (Figure 5a). A rotation rearranges left and right children while

preserving the symmetric order. Middle children are unaffected. The sequence of rota-

tions is determined by the structure of the path [151. To perform links efficiently, we use



- 15-

h

M k

Figure 4b: The virtual tree representing the actual tree of
Figure 4a [151.

a procedure called an extended splay at node v, abbreviated e-splay at v. An extended

splay at v moves v to the root of its virtual tree without changing the structure of the

actual tree that the virtua! tree represents. The e-splay algorithm is described fully in

Sleator and Tarjan [15]. Besides rotation, the extended splay uses a second primitive

called splicing, which exchanges a middle child with the left child of a solid subtree root

(Figure 5b).

Reference [151 gives rules for updating the reversal bit and left, right and parent

pointers of the nodes affected by a rotation or splice. Since rotation preserves symmetric

order, it does not affect the values of pred(v) or succ (v). If the rotation replaces the old

subtree root r with a new root v, however, then the values of leftmost (r) and rightmost (r)

must be copied to v, and pred (leftmost (r)) and succ (rightmost (r)) must be updated to

point to v.



-16-

w !

A r * A

w w

U V

I U

314 (b) 2

Figure 5: (a) Rotating the edge between v and w. If w is
the root of its solid subtree, then pointers to I and r, the left-
most and rightmost nodes in the subtree, must be added to
v. (b) Splicing v to w. Node 3 becomes the leftmost node
in the solid subtree rooted at w, while nodes 1 and 2 be-
come leftmost and rightmost, respectively, in the solid sub-
tree rooted at u.

If w is the root of a solid subtree, u is the (possibly null) left child of w, and v is a

middle child of w, then splicing makes v the left child and w a middle child. The addi-

tional pointers introduced in this paper are updated as follows (a prime indicates the new

value):

leftmost'(u) - leftmost (w) pred'(leftmost'(w)) - w
lefrmost'(w) = leftmost (v) pred'(leftmost'(u)) = u
rightmost'(u) = pred(w) succ'(pred'(w)) = w
pred'(w) = rightmost (v) succ' (rightmost' (u )) = u

A null splice at w occurs when u is taken to be null. This simply makes the left subtree

of w into a middle child without replacing it by another left subtree. (Null splices occur

during evens.)

In the above, by pred(v), succ(v), leftmost (v), and rightmost(v) we mean the

actual predecessor, successor, etc., of v. The fields containing these values may be

switched if node v is in reversed state. During an extended splay at node x, the reversal



- 17-

state is computed for all nodes along the path f-om x to the root of its virtual tree. The

reversal states of the leftmost and rightmost nodes in a solid subtree can be determined

by examining which of their predecessor or successor pointers points back to the root.

Both rotation and splicing require 0 (1) pointer steps. The total time for an e-splay is

bounded by a constant factor times the number of nodes on the path that is splayed.

In general, the linking together of two virtual trees is implemented by an e-splay in

both. When the parent tree is much larger than the child tree, however, we will tem-

porarily defer a full e-splay in the parent tree. To support this deferral process, the nodes

of each virtual tree V are partitioned into a collection of disjoint sets, denoted D, which is

a coarsening of the partition induced by the solid subtrees. (All nodes in a given solid

subtree belong to the same subset, but a set may include many solid subtrees.) These sets

are maintained with a fast disjoint set union algorithm. We let D-find(u) and D-

union(A,B) denote the standard set union operations on this partition. For node u, N(u)

must be augmented with an element name for use with D -find.

When Makerree creates a new single-node tree, a new set of D is created, containing

only the new node. For each set S, the disjoint set union algorithm maintains a virtual

size denoted vsize(S). A new single set has virtual size 1. Whenever D-union (A,B)

occurs, the algorithm sets vsize(A) = vsize (A) + vsize (B). Since node condensations may

reduce the actual number of nodes in a set, we have vsize(S) > IS I. We denote by

vsize(V) the sum of the virtual sizes of the sets into which V is partitioned. Thus

vsize(V) 1 VI, with equality when no condensations have occurred. For convenience,

we will use "size" to mean virtual size, unless otherwise noted.

If u is a middle child of v and D-find(u)* D-find(v), the pointer vparent(u) is

called a deferred link. Deferred links are handled specially during the processes of evert-

ing a tree and of linking two trees together. The partition of V imposed by D satisfies the

following two deferred link invariants:

I. Let v be any node in set S, and let r be the parent node of the first deferred link on

the path from v to the root of V. If there is no such deferred link, then let r be the

root of V. Then r is the same for all v e S. Thus D defines a unique mapping D-

root such that D-root(S) = r, and the set Su [D-root(S)) forms a connected sub-

tree within V. Note that two sets could have the same D -root.



-18-

H. If S 2 is the set containing D-roor(SI) then vsize(S 2)>2.vsize(Sj) (unless D-

root (S 1) is the root of V, in which case S I = $2.

Lemma 3:

Let node v be an ancestor of node u in virtual tree V, and let n = vsize(D-find(v)).

Then there are O(logn) deferred links on the path from u to v in V.

Proof. Straightforward application of invariant II. 0

We now give a version of Sleator and Tarjan's extended splay that is modified to

handle deferred links. The e-splay is a five pass process. In the first pass, we walk up the

path from x to the root of its virtual tree. Each time we encounter a node y that is in a

new solid subtree, we splay at y. After the first pass, the path from v to the root consists

of dashed edges and deferred links. In the second pass, we walk up the path, splicing at

each dashed edge. After the second pass, the path consists of solid subtrees, containing

only left children, separated by deferred links. In the third pass, we splay at each parent

of a deferred link. After the third pass, the path from x to the root consists only of

deferred links. In the fourth pass, we walk up the path, converting each deferred link into

a regular dashed edge by uniting the sets that contain the parent and child of the deferred

link, and splicing at the resultant dashed edge. After the fourth pass, all nodes on the

path belong to the same set of the D partition, and x and the root of the virtual tree are in

the same solid subtree. In the fifth pass, we splay at x, making x the virtual tree root.

(See Figure 6.)

Lemma 4:

An extended splay preserves the deferred link invariants.

Proof. Only pass four of the e-splay affects the partition defined by D. After pass three,

each node on the path belongs to a distinct set, whose D-root is also a path node. Let S'

be the union of all sets produced by pass four. Clearly the nodes of S' form a connected

subtree, and the root of the virtual tree is D-root(S'). Therefore invariant I still holds.

Let S be any set such that D-root (S) is contained in S' following pass four. This

implies that prior to pass four, D-root(S) was contained in one of the sets that was united

to form S'. Since the virtual size of S' is the sum of its constituent sets, invariant I must

hold for set S after pass four. 0



X ,
. I

I-'o * b I]

(C)

0 I

(d)

(ersetd)fre li2s (a 2is s paigisd

3 5 4 4

2 7 27
51 7

6 96 9 6 (i 9

Figure 6: An extended splay at node v. Subtrees of nodes
on the path have been deleted for clarity. Dotted lines
represent deferred links. (a) First pass: splaying inside
solid subtrees (see [15] for details of splaying). (b) Second
pass: splicing dashed edges. (c) Third pass: splaying solid
subtrees between deferred links. (d) Fourth pass: convert-
ing deferred links to dashed edges, followed by splicing.
(e) Fifth pass: splaying along final solid path.

With the above machinery in place, we turn to the implementation of Link(u,v).

Basically, we perform an extended splay at u followed by a partial extended splay at v,

and then make u a middle child of v. Following the extended splay at u, the right subtree

of u contains the path from u to the root of its actual tree. To evert the tree at u, we per-

form a null splice at u and toggle the reverse bit in u. This reverses the direction of the

solid path containing u, making u the root of the actual tree as well as of the virtual tree.

(This implementation of even is described in reference [14]).

• • i .! l I



-20-

Let k be the size of the D set containing u after the extended splay at u. If k is at

most half the size of the D set containing v then no e-splay at v occurs and u is simply

made a child of v by a deferred link. This preserves the deferred link invariants. Other-

wise, a partial extended splay at v is done. To determine the extent of the e-splay, we

walk up the tree from v until encountering a deferred link from node x to node y such that

the sum of N and the sizes of the sets on the path up to x is at most half the size of the set

containing y. We treat x as the root of the virtual tree and do an extended splay at v.

This e-splay makes v a child of y by a deferred link, after which u is made a middle child

of v and we perform D-union (D-find(u),D-find(v)), thereby making the deferred link

joining u an v into a dashed edge. If we reach the root of the virtual tree before finding

such a deferred link, we simply do a full e-splay, moving v to the root of the virtual tree;

then we attach u to v by a dashed edge as described above.

From Lemma 4, the two extended splays preserve the deferred link invariants. It is

easily observed that if no e-splay at v occurs, or if the e-splay at v makes v the root of its

virtual tree, the link preserves the deferred link invariants. Suppose a partial e-splay at v

takes place, terminating at the k0k deferred link. Let the kth link pass from node x to

node y. Prior to the extended splay at v, node y is the D-root of the set containing x, and

after the e-splay y is the D-root of the combined set resulting from the e-splay. After the

e-splay, the size of the set containing v is N +Pkt (v), which by the termination condi-

tion on the initial walk up from v is at most half the size of the set containing y. There-

fore both invariants are preserved in the case of a partial e-splay at v.

Now we turn to the implementation of Findpath (u,v). Let T be an actual tree and

let V be the virtual tree representing T. Findpath (u,v) returns P as a list of pointers to

nodes, ordered from u to v, so that two nodes are adjacent in P if and only if they are

adjacent in T. As in section 2, we find a path from u to v by walking up the paths from u

and from v to the root of the real tree T. We generate the two paths in lock-step and stop

as soon as they intersect at the nearest common ancestor of u and v. The general strategy

to find the path from node u to the root of T is to locate u in V, and follow successor

pointers until reaching the rightmost node r in the solid subtree containing u. Then we

jump to the subtree root t via succ (r) and follow the dashed edge vparent (t) to the next

node on the path. This next node lies in a new solid subtree. We repeat this procedure

until encountering a null vparent (t) pointer. Then r is the real tree root.



-21-

Unf( . unately, this strategy cannot be applied directly, since it is impossible to

determine the reversal state of u, and hence the interpretation of pred (u) and succ (u),

without walking down to u from the solid subtree root. This would increase the cost of

path finding to 0 (d + I P I ), where d is the depth of u. It is possible, however, to gen-

erate a path that consistently moves in the same direction once a direction in which to

start is chosen. If we follow a pointer from node x to node y, then one of pred(y) or

succ (y) must point back to x. To generate the next step in the path, we can simply fol-

low the other pointer. Furthermore, once the path encounters the leftmost or rightmost

node in the solid subtree, we can jump to the subtree root and determine whether the path

goes up or down the actual tree.

Given this, we can find the path P between nodes u and v using the following algo-

rithm We march in lok-step in both directions out of u and v, marking nodes encoun-

tered. Thus in parallel we generate two pairs of tentative paths, one node at a time.

When one tentative path encounters a solid subtree root, we determine which of the two

tentative paths goes up the tree, and discard the other tentative path, after unmarking the

incorrectly marked nodes. If the subtree root was encountered in the incorrect direction,

then we then proceed in the correct direction (in step with the other search) until finding

the subtree root again. Then we follow the parent pointer of the root into a new solid

subtree, at which point ambiguity again arises. Path generation is complete when one

tentative path from u intersects one tentative path from v. By marching in two directions

simultaneously, we double the number of pointer steps required to generate one node of

the path, but the total time to generate a path of length I remains 0 (1).

Knowing a way to find P, we can turn to the implementation of

Condensepath (P,A). P consists entirely of round nodes, all of which must be condensed

into a single round node. Let Condense 2path (x,y,A) be a function that condenses a path

consisting of two adjacent nodes x and y, and labels the resultant node z by A.

Condensepath (P,A) proceeds by repeating the following condensation step until P con-

sists of a single node: select a pair of adjacent nodes xy from P. Perform

Condense 2path (x,y,A). (Let T' be the tree resulting from this condensation.) Replace x

and y in P with z.

Since path condensation preserves adjacency, it is clear that after a condensation

step, P is the path between u and v in tree T'. An inductive proof using this observation



- 22 -

shows that Condensepath correctly condenses a path of arbitrary length. We now turn to

the implementation of Condense 2path (x,y,A). We distinguish two cases based on the

relationship between x and y in the virtual tree: 1) x and y are in the same solid subtree;

and 2) x and y are in different solid subtrees. In Case 1, at least one of pred (x), succ(x)

contains a pointer to y. In case 2, neither of these fields contain a pointer to y. This fact

can be used to determine which case applies.

Case I is shown in Figure 7a. The adjacency of x and y in the actual tree implies

that one is the ancestor of the other in the solid subtree. Assume that y is the ancestor of

x. For the moment, we assume that the reversal states of x and y are known. Let y be the

successor of x. (The other possibility is symmetric.) This implies that the right subtree

of x is empty, and that the successor pointer of x points to y. By examing the fields of x

and y for this configuration, we can determine which of them is in fact the ancestor. That

is, y is the ancestor of x if right(x) is null and succ(x) is y, or, in the symmetric case,

left (x) is null and pred(x) is y.)

Let w=vparent(x). (It may be the case that w=y.) Let u =left(x). To begin the

condensation, node u is made a child of w in place of node x. This is done by replacing

the pointer to x in w by a pointer to u and setting vparent (u) = w. The old value of

reverse (u) is replaced by the exclusive-or of reverse (u) and reverse (x). Nodes x and y

are combined to form z. The fields in N(z) are copied from N(y), with the exception of

label (z), which is set to A, and of pred(z), which is copied from N(x).

Combining x and y, which unites their subnode sets, guarantees that all former

pointers to x or y are now pointers to z. The former predecessor of x and the former suc-

cessor of y become the predecessor and successor, respectively, of z. All former middle

children of x or y become middle children of z. Hence, node adjacencies in the

transformed tree are correctly preserved. In general, the reversal states of x and y are not

known, but they are not actually needed. One of left (x) or right (x) must be null, so the

pointer to u can be found in the other. Similarly, one of pred(y) or succ(y) points to x.

The corresponding field in z is copied from whichever of pred(x) or succ(x) does not

contain a pointer to y.

Case 2 is shown in Figure 7b. The adjacency of nodes x and y implies that one, say

x, must be rightmost in its solid subtree. The root of this solid subtree is a middle child of

y. The reversal state of x can be computed by determining which of pred(x) or succ (x)



- 23 -

points to the root of the solid subtree. Since x is rightmost, its right subtree is empty. Let

u = left (x). If x is the root of its subtree, a null splice is performed to make u a middle

child of x. Otherwise, let w = vparent (x). Using the pointcr and reversal bit updates

given in case 1, u replaces x as the right child of w. This makes pred(x) rightmost in the

solid subtree. The leftmost field in the solid subtree root and the successor field in

pred(x), (i.e., the field containing a pointer tox) rust be updated accordingly. Finally, x

and y are condensed to give z. N(y) is copied toN(z), and z is labeled A.

I, z

1! Ior W or

(b)

Figure 7: a) Case I of Condense 2path (x,y,A).
w = vparent (x ). (We may have w =y.) Node z is the result
of the condensation. b) Case 2 of Condense 2path (x,y,A).
(We may have:t = w.)

Lemma 5:

Condense 2path (x,y,A) preserves the deferred link invariants.

W W W W



- 24 -

Proof. If x and y initially belong to the same set S of D, then the condensation does not

change the invariants for S. If, prior to the condensation, x (or, equivalently, y) is D-

root (S') for some set S', then all nodes of S' are descendants of one or more children of

x. The condensation makes all children of x (and y) into children of z. Hence invariant I

is preserved for S', with D-root (S') = z. Although the condensation decreases the actual

size of S by one, its virtual size is unchanged. Therefore invariant l is preserved for all

sets whose D-root is contained in S.

In case 1 of Condense 2path(x,y,A), x and y belong to the same solid subtree, and so

must belong to the same set S. In case 2, however, x and y may belong to two different

sets, say S I and S2, respectively. This situation occurs when the root of the subtree con-

taining x is a child of y by a deferred link. The invariants imply that y is D -root (SI) and

vsize (S 2) -2vsize (SI). Fo; any descendant of x that belongs to S1, the deferred link

between the solid subtree root and y is the first deferred link on the path to the root of the

virtual tree. The condensation makes all middle children of x into middle children of z

by deferred links, while the left subtree of x remains in the solid subtree that contained x.

Thus after the condensation z is the parent of the first deferred link on the path from an'

element in S 1 to the virtual tree root. Since no virtual size changes, invariants I and II

are preserved for SI and S2, with D-root(SI)=z. As before, invariants I and II are

preserved for all sets whose D-root is contained in SI or S2 prior to condensation. 0

The following lemma follows from an examination of the Condense 2path algorithm.

Lemma 6:

During condensation, the number of virtual tree descendants of any node is non-

increasing.

5. Amortized Analysis of Link/Condense Operations

To begin the running time analysis, we observe that the time to perform Link(u,v)

is a function of the original depth of u and the length of the path traveled up from v. We

can measure this depth by the number cf rotations performed during the two e-splays.

The time to perform Fjndpa:h (u,v) is .. :r ie y the number of times a node along

the path is found, and the time to perform Condensepath (P,A) is measured by the

number of times a pair of nodes are combined by Condense 2path We define rotation,



- 25 -

node-finding, and pairwise combination to be basic primitives of cost 1, since each is

responsible for at most q constant number of condensible node operations. The cost of a

link/condense tree operation is measured by the number of primitives executed while per-

forming the operation, and he amortized time for an operation is the product of the cost

of the operation with the amortized time to perform 0(1) condensible node manipula-

tions.

The amortized analysis uses a potential function [15,17] defined on the virtual tree

structure. For each node x in a virtual tree, we define the weight of node x, w(x), as the

number of virtual tree descendants y of x, including x itself, such that D-find(y)=D-

find (CA), i.e. all descendants of x belonging to the same D-set as x. We define the loga-

rithrnic weight lgw(x) of node .i to be log w (x).t The potential D is defined as follows:

S= Y, 21gw(x) + , 18(3+logvsie(S))
nodes x S E D

Let 0, denote the value of the potential function after the ith operation. If ti is the actual

cost of the ith operation then the amortized cost ai of the ith operation is defined by

ai = t + AC, where AC = O - ), -1

We begin by analyzing the cost of an extended splay at node v. Suppose that there

are k deferred links on the path from v to the root of the virtual tree (or, in a case of a par-

tial e-splay, to the node that is treated as the root). Then the path passes through k+l sets

So,S1, "" ",Sk of the D-partition, where So contains v and Sk contains the virtual tree

root. Abbreviating vsize (Si) by Ni, let p,= Y ISj I, and Pi= Y N1 . Since
OSjSi 0<_psi

N, 2 I Sj I for all i, we have Pi 2 pi.

Lemma 7:

Pi <2Nj for0<i <k.

Proof. From Lemma 3, if N, =m, then i 5 logm. By invariant II, N,_1 5 Ni/2,

N,- 2 < Nj-I /2, etcetera. Thus

N5SNj !5 :-- 2N, - 1.

OSJ!5i 05jS162

f By log we mean continuous binary logarithm.



- 26 -

0

Lemma 8:

The amortized cost of an extended splay at v is at most

24 logNk+O(1)+ Y [(l2logN+4)-l8(3+logNi)], where k and Ni are

defined as above.

Proof. Passes one, two, three, and five do not affect the partition defined by D, so any

changes to the potential in these passes occur only in the term involving lgw(x). In refer-

ence [15], Sleator and Tarjan use this reduced potential function in analyzing their splay

and extended splay algorithms. From their paper we draw two facts: first, the cost of the

splay in pass five is at most 6 logpk + 1; second, the cost of passes one through three in

the contiguous section of path between the i"4 and i+l]' deferred links is at most

121gw(xi)+2, where xi is the i th node on the path after pass three. Thus the cost of passes

one, two, three, and five is

6logpk+l+ I [121gw(xi)+2].

After pass three, the path from v to the root consists of the k+1 nodes xi. Pass four does

no rotations so it has zero actual cost, but the uiions done in pass four change the poten-

tial. The k+l sets Si, 0<i Sk, are replaced by a single set S' with virtual size Pk. The

unions also incre-se the weight of each node xi on the path, since the number of descen-

dants of xi that belong to the same set as xi increases. iLy invariant I, node xi is D-

root (Si- 1 ) for I ! i <k. This implies that only the nodes on the path increase in weight as

a result of the unions. During pass four node xi increases in weight by at most

pi - w(xi), where (xi) is the weight of xi prior to pass four. Thus the cost of pass four is

at most

18 (logPk+ 3 ) + [2log(p i) - 21gw(xi) - 18(3+logNi)]

We have Pi api 2 w(xi) and Ni > w(xi). From Lemma 7, 2N ! Pi. Combining terms,

and using these observations, the lemma fol'ows. 0

Lemma 9:

Let u be contained in virtual tree V. The amortized cost of Link(u,v) is O(logn).

where n = vsize (V).



- 27 -

Proof. Using Lemma 8, it is straightforward to show that the extended splay at u has

cost 0 (logn), since each term of the sum in Lemma 8 is less than zero, and Nk < n. If no

e-splay at v occurs, this is the entire cost of the link. To analyze the cost of an e-splay at

v, we divide the sum of Lemma 8 into two parts. Let I be minimal such that N > n. We

rewrite the sum of Lemma 8 as A + B, where

A= 12logN, + 4+ Y [(121ogNi+4)-18(3+logNi)]
0O5i -C1

and

B=61ogNk+0(1)+ Y, [(121ogNj+4)-18(3+logN_ 1 ]

To bound these sums, we observe that since the e-splay at v did not terminate upon

reaching the i h set, it must be the case that n +Pi-I > Ni/2. Each term of the sum in A

is at most zero, so A is 0 (logN,). We bound N, as follows: by Lemma 7, Pl-1 5 2NI- 1.

By the definition of 1, n > N- 1 . Together with our initial observation, this implies that

N, < 6n, and hence A = 0 (logn).

To bound B, we observe that by the definition of 1, Ni 2n for i > 1. Together with

Lemma 7, this implies that 5Ni_.1 2 2(n + Pi-1 ) >Ni. Using this inequality, we find that

each term of the sum in B is at most -(6logN -8 ), and hence B is 0 (1). Therefore, the

extended splay at v has amortized cost at most 0 (logn). Finally, making u a middle

child of v, and uniting the two sets containing u and v, increases the potential of v by at

most 0 (logn). Thus Link (u,v) has amortized cost 0 (logn). El

Theorem 3:

A sequence of m bridge-connected component operations can be performed in

worst-case time 0 (mcx(m,n)).

Proof. As before, each condensible node operation takes amortized time O(ox(m,n)). A

call to Makerree costs 0(1), since it increases the potential by a constant amount. Path

finding does not modify the tree, so the potential is unchanged. Since a find block ope:ra-

tion requires the finding of a constant-length path, the total time spent in find block

operations is O(mct(m,n)). Lemmas 5 and 6 imply that Condense2path does not

increase the potential and so has amortized cost at most 1. Thus the total cost of condens-

ing edge insertions is 0 (n), and the worst-case time is O(na(m, n)).



- 28 -

To determine the total cost of component links, we note that since the number of

square nodes bounds the number of round nodes, thre virtual size of a bridge-block tree is

at most twice the number of vertices in the corresponding component of the graph. Com-

bining this observation with Lemmas 7 and 8, we find that the amortized cost of a com-

ponent link is 0 (logn), where n is the number of vertices in the smaller component. This

gives the following recurrence for the total cost of component links:

T(n) max1 5j!.2 {T(j) + T(n-j) + c( I + log"))

This implies T(n) = 0(n). There is at most one call to D-find or D-union per pointer

step, and hence the total time spent manipulating the D partition is O(not(T(n),n)),

which is O(mcx(m,n)). Thus the total cost of processing component links is

0 (mo (m,n)). 0l

In conclusion, we remark that all data structures are size 0(n), and thus the space

required by the algorithm is 0 (n).

6. A Data Structure for an Optimal Block Algorithm

The link/condense tree data structure of the previous section can he modified to pro-

duce an efficient data structure for maintaining the block structure forest. Unfortunately,

these modifications are not trivial. The complications arise from the fact that a block tree

path consists of alternating round and square nodes, and during path condensation only

the round nodes are combined. Care must be taken in restructuring the virtual tree so that

movement of the square nodes does not increase the value of the potential function

(which would cause the amortized time per update to increase).

We take as our starting point the complete link/condense tree data structure of the

previous section. On this data structure, we impose the following solid subtree restric-

tions:

(i). Each solid path in the actual tree either is a single round node or terminates in a
square node (i.e., a square node is rightmost in the corresponding solid subtree of the
virtual tree.)

(ii): All square nodes are leaf nodes of their solid subtrees.



- 29 -

The algorithm for Findpath (u,v) given in Section 4 can be used here without

changes. To implement Condensepath (P,A), we use the function

Condense 3path (r,u,s,A), which transforms a three-node path consisting of round node r,

square node u, and round node s, and returns the round node t, labeled A, resulting from

the condensation of r and s. Path condensation proceeds by repeatedly selecting a three-

node path from P and replacing it with the single node returned by Condense 3path. The

process terminates when P consists of a single round node. There are four cases for

Condense 3path (r,u,s,A):

1) all three nodes are in the same solid subtree;

2) u and one round node are in one subtree whose root is a middle child of the other

round node;

3) u and one round node are in one subtree, and the other round node is a middle

child of u;

4) all three nodes are in different solid subtrees.

Which case applies can be determined by examining vparent pointers.

In cases I and 2, the relationship between virtual tree and actui! tree implies that in

the actual block tree, one round node is an ancestor of u and the other is a descendant of

u. In case 1, restriction (i) implies that in the solid subtree one of r and s is a descendant

of the other, and u is a child of the descendant round node. This fact can be used to deter-

mine which of r and s is the ancestor. Let r be the descendant. (Tt:- subcase with r the

ancestor is analogous.) Node u is either the left or right child of r. The other child of r is

made a child of vparent (r) using the pointer and reverse bit updates described in case I

of the Condense 2path routine of Section 4. Then nodes r and s are condensed together

to give node t, with the fields of t being copied from the fields of s. This makes u a mid-

dle child of the condensed node.

In case 2, assume that r is in the same solid subtree as u. (The case of s in the same

solid subtree is analogous.) Restriction (i) implies that u is the right child of r and that u

is rightmost in its solid subtree. As in case 2 of Condense 2path, the left child of r is

made into the right child of vparent (r). Then nodes r and s are condensed together to

give node z, with the fields of t being copied from the fields of s. This makes u a middle

child of the condensed node.



- 30 -

Cases 3 and 4 are simpler. At least one of the round nodes r and s is a middle child

of u. By restriction (ii) this round node must be a singleton solid subtree. The two round

nodes are simply condensed to give t. The fields of t are copied from whichever round

node is not a descendant of u, or, if both r and s are descendants, from either one.

The four cases are shown in Figures 8a through 8d. From examination of the cases,

it is clear that Condense 3path does not violate the solid subtree restrictions. The proofs

of Lemmas 5 and 6 in Section 4 can be adapted to show that Condense 3path preserves

the deferred link invariants, and does not increase the weight of any node.

We now turn to the implementation of Link(u,v). Although Link remains

unchanged in basic design, the existence of solid subtree restrictions necessitates changes

to the extended splay procedure, and this in turn causes slight modifications to Link.

Recall that the extended splay is based on splaying. A splay at node x moves x to

the root of its solid subtree by rotating every edge along the path from x to the root.

Splaying does not rearrange the subtrees rooted at nodes off the path from x to the root.

This implies that if x is round, a splay at x cannot violate restrictions (i) or (ii). Splaying

a square node to the root, however, will violate restriction (ii) except in the trivial case

that the square node is a singleton solid subtree. Therefore, we define the function

square-splay (v), which moves a square node to within one step of the root.



-31-

S St t

or or
w w w w

r r
U EU

G(a

or or~

rU

(b)

% KJ
Qr or *A orA

A A (C)

c~ 'o r or % t 2-

(d)

Figure 8: Cases I through 4 of Condense 3path (rusA).
Node t is the result of condensing nodes r and s.



- 32 -

square-splay (v) begin
splay at pred (v); splay at succ (v);
rotate the edge between v and pred (v);
perform a null splice at pred (v);
perform a null splice at v;

end

In the above, by pred(v) and succ (v) we mean the actual predecessor and succes-

sor, respectively, of v. The fields containing these values may be switched if node v is

reversed. (The reversal states of all nodes along the splay path are computed by an initial

walk down the path.) The behavior of splaying is such that after the first two splays, v is

a right child of pred(v) and pred(v) is a left child of succ(v) (see [15]). If v has no

predecessor or successor, then the code involving the missing node can simply be

ignored. For example, if v has no predecessor, then we need only splay at the successor.

At the conclusion of square-splay (v), node v remains a leaf; either it is a singleton solid

subtree or it is the left child of the root. Thus square-splay does not violate the solid sub-

tree restrictions.

We must also be careful when splicing. An attempt to splice a round child to a

square parent may violate restriction (ii), while an attempt to splice any child into a

round node that forms a single-node subtree may violate restriction (i). To handle the

first case, we introduce a new splice function, square-splice (r), where r is a round child

of a square parent. Note that by restriction (i), r is a single-node solid subtree.

square-splice (r) begin
let v = vparent (r); splice r to v.
rotate the edge between r and v;

end

At the conclusion of square-splice (r), square node v is the right child of r. Since r

had no right child initially, v remains a leaf node after the rotation. Thus square-splice

does not violate the solid subtree restrictions.

In the second case, we can allow the splicing of a left subtree to a round node r that

forms a single-node subtree as long as r has a parent. Since this parent must be a square

node, r will immediately participate in a square-splice that will give it a square right

child, guaranteeing that restriction (i) is not violated. The splice is disallowed if r is the



- 33-

root of the virtual tree (and hence the root of the actual tree), or if there is a deferred link

from r to its parent.

As before, an extended splay at v is a five-pass process. (In the block algorithm we

only e-splay at square nodes.) We use square-splays and square-splices as needed, and

do not splice at singleton round nodes from which there are deferred links. After the first

pass, the path from v to the root consists of dashed edges, deferred links, and solid edges

between a square node and its parent. After pass three, the path from v to the root con-

sists primarily of deferred links. Between each pair of deferred links there is a section of

path that consists of either a single round node, or a solid edge between a square node

and its round parent, or a solid edge between a square node and its round parent followed

by a dashed edge leading into a single-round-node round subtree. After passes four and

five v is either at the root, is a left or middle child of the root, or is the left child of a mid-

die child of the root. Figure 9 gives an example of the first three passes of an extended

splay, showing square-splays and square-splices.

The Link algorithm is essentially the same as that of Section 4. The only difference

is in the way a tree is everted at square node v. Consider the possible cases after the ini-

tial e splay at v. If v is the root of its ,,r",!ree, no processing is needed to do the ever-

sion. If v is the left child of the virtual tree root, then we simply toggle the reverse bit in

the root. If v is a middle child of the root, we perform an ordinary splice at v and toggle

the reverse bit in the root. If v is a left child, and vparent (v) is a middle child of the

root, then we perform an ordinary splice to make vparent (v) a left child of the root, and

toggle the reversal bit in the root. In the latter three cases, v becomes the end of a solid

subpath, so restriction (i) is not violated.

The modifications to splay-ing and splicing do not affect the way the deferred link

partition of the virtual tree is maintained. We may therefore use the proof of Lemma 4 in

Section 4 to conclude that e-splay and Link preserve the deferred link invariants. With

our description of the block algorithms complete, we turn to the analysis of their running

times.



- 34 -

* I
* I

() (b)

2

', 1

Q 7

A A

Figure 9: Passes 1-3 of an extended splay at node v. The
path contains no deferred links. Triangles represent sub-
trees with a square rightmost node. (a) First pass: splaying
and square-splaying inside solid subtrees. (b) Second pass:
splicing and square-splicing dashed edges. (c) Third pass:
square-splay along final solid path.

7. Amortized Analysis of the Block Link/Condense Tree

In general our analysis here closely follows that of Section 5. We define the poten-

tial 4) to be:

15 lgw(x) + 1 85 ( 3 + log vsize (S))
nodes x S e D

It is straightforward to adapt the analysis of Section 5 to show that the total time spent in

queries and condensing edge additions is O (ma(m,n)). To achieve the same bound for



- 35 -

component links, it suffies to demonstrate that the amortized cost of Link (u,v) is still

0 (logn). As before we measure cost by number of rotations. We will be fairly terse in

the analysis, relying on results proved in reference [15]. The reader is advised to exam-

ine that paper for further details and explanation.

We begin by analyzing the costs of square-splay (v) and square-splice (r). From

Lemma I of reference 115] we draw the following fact: let x be a left or right child of y.

A single rotation of the edge between x and y has amortized cost

I + 3(51gw(y) - 51gw(x)). This bounds the cost of a square-splice.

From the same source, we draw a second fact: let y be the root of a solid subtree that

contains node x. The amortized cost of a splay at x is at most 1 + 3(51gw(y) - 51gw(x)).

In executing square-splice (v) we perform two splays and a single rotation. The proper-

ties of symmetric order imply that, since v is a leaf, both the predecessor and the succes-

sor of v must at all times be ancestors of v, and hence their logarithmic sizes are always

greater than that of v. This implies that the amortized cost of square-splay (v) in a solid

subtree rooted at t is at most 3 + 45 (lgw(t) - lgw(v)).

We now bound the cost of the first three passes of an extended splay at node v.

Lemma 10:

Consider a section of the path from v to the root that is bounded by deferred links,

i.e. all nodes on the path are in the same set of the D-partition. Let x be the lowest

node on the section of path and let t be the highest node. (Thus x is a parent of a

deferred link and t is a middle child of a deferred link.) The cost of passes one, two,

and three in this section of path is is at most 75 logn + 13, where n = w(t).

Proot. Let k be the number of solid subtrees on the initial path from x to t. The amor-

tized cost of the first pass is at most 3 k + 45 lgw(t). This bound follows from summing

the splay or square-splay costs within each solid subtree. The amortized cost of the

second pass is at most k + 15 lgw(t), since there are most k square-splices and the sum

again telescopes. Thus the amortized cost of first two passes is 4k + 60lgw(t).

If x is square, then after the second pass, x is at depth k, and in the third pass,

square-splay (x) will perform exactly one splay, moving the parent (successor) of x to the

root (or to within one step from the root, if t forms a round single-node subtree). If x is

round, x is at depth k-I and is itself splayed to the root in the third pass. Therefore, at

least k-2 rotations occur in the third pass. We charge 5 for each of these k-2 rotations;



- 36 -

the additional charge accounts for 4k-8 of the rotations left over from the first two

passes. Fro- the d -ion of e-splay in reference [15], we find that even with this addi-

tional charge, the amortized cost of the final splay is at most 5 + 15 lgw(t). Summing

over the three passes, we obtain the desired result. The constant factor can be reduced to

45 by noticing that single-round-node subtrees and square nodes come in pairs along the

path, and j such pairs cause at most 2j extra rotations in passes one and two. 0

The D-unions that occur in pass four are more expensive here than in the bridge-

block algorithm, because there may be as many as three nodes between each deferred

link, each of which has its weight increased by the D-unions. Using the definitions of

Lemma 8, Section 5, and letting xi denote the highest node on the path belonging to set

Si, we find that the D-unions change the potential by at most

85(logPk+3) + 7 [15log(pi)- 51gw(xi)- 85(3+logNi)]

After the D-unions in pass four, the path from v to the root contains no deferred links, so

we can use Lemma 10 to bound the cost of the remaining splices in pass four and the

splay in pass five. Therefore, a bound on the amortized cost of an extended splay is

given by

160logNk + O(1)+ [(85logNi+28)-85(3+logNi)]

As in the proof of Lemma 9, Section 5, this bound can be used to show that

Link (u,v) has amortized cost 0 (logn), where n is the virtual size of the tree containing u.

Theorem 4:

Any sequence of m biconnected component operations can be performed in worst-

case time 0 (ma(r(m, n)).

8. General Lower Bounds

Lower bounds for the on-line block and bridge-block problems can obtained using

simple reductions from the disjoint set union problem. Let n be the number of elements

and n the number of operations in an instance of disjoint set union. Tarjan [16] gave a

lower bound of fQ(a(m,n)) on the amortized time per operation and Blum [2] gave a

lower bound of KI(logn/loglogn) on the worst-case time of a single operation. Both



- 37 -

these lower bounds apply to the class of separable pointer aigorithms for set union. This

class is described more fully in references [2,8,13,16,231; in summary, a separable

pointer algorithm uses a linked data structure that can be represented by a directed graph.

The separability rule states: "after any operation, the data structure can be partitioned

into node-disjoint subgraphs, one corresponding to each currently existing set and con-

taining all the elements in vn-' set. The name of the set occurs occurs in exactly one node

in the subgraph. No edge leads from one subgraph to another."[23]

Recently, Fredman and Saks [6] have given an f(oc((m,n)) bound on the amortized

cost per operation in the cell probe model of Yao [24]. It is also possible to show an

f2(logn /loglogn) bound on the worst-case cost per operation [M. Fredman, private com-

munication, 1989]. In this powerful and general model, memory is organized into cells,

each of which can hold logn bits. In answering a query, a cell-probe algorithm is allowed

to randomly access cells based on the information gathered from previous probes. The

two models are related as follows: if the number of bits in a separable pointer machine

node is bounded by P(n) 2 logn, then the separable pointer machine can be simulated by

a cell probe machine, with running time increasing by a factor of P(n)/logn.

The reduction from disjoint set union to the on-line block and bridge-block prob-

lems is straightforward. For each set element a we create a pair of vertices a0 and a 1

connected by an edge ea. To answer a find query, we execute find block (ao) or

find block (ao,a I), depending on whether the reduction is to the bridge-block or block

problem, respectively. To unite the sets containing elements a and b, we add an edge

between ao and bo and an edge between a, ind b1 . Ths each set corresponds to a

component that is both bridge-connected and biconnected. We define a separable pointer

algorithm for bridge-connectivity or biconnectivity to be an algorithm that uses a linked

data structure in which no pointer connects the subgraphs representing each graph com-

ponent. If we begin with a separable algorithm for bridge-connectivity or biconnectivity,

the above reduction gives a separable pointer algorithm for disjoint set union. Similarly,

the reduction can be used to give a cell probe algorithm for disjoint set union.

We can also give a reduction of disjoint set union to the variant of the block prob-

lem in which the graph is initially connected. The initial graph resembles a wheel with

hub vertex h. For each element a there is a vertex v. and an edge connecting va to h.

Queries are answered by executing find bick (h,va). To unite the sets containing a and



- 38-

b, an edge is added between va and vb. The algorithm given by this reduction does not

fit the separable pointer machine model, but the cell probe lower bounds apply. For the

variant of the bridge-block problem in which G is initially connected, we know only the

trivial lower bound of (l) on the time per operation.

9. Remarks.

One major difference between the dynamic tree data structure of Sleator and Tarjan

and the link/condense tree data structure presented here is that in the latter the time to

link together two trees is dependent only on the size of the child tree. If condensation is

not required, the tree can be modified to implement all the standard dynamic tree opera-

tions, such as find min and add cost, in time O(logn), while still allowing fast linking.

Such a tree would be suitable for any tree-based algorithm in which a recurrence relation

similar to that of the bridge-block or block algorithm arises.

This paper leaves open the problem of maintaining the triconnected components of

a graph undergoing edge insertion, and it leaves a gap in the table of section 1 between

the upper and lower bounds for the bridge-block problem on an initially connected graph.
We also leave open the problem of implementing any kind of edge deletion in time o (n)

per operation. Reif [121 introduces the notion of complete dynamic problems, i.e., a col-

lection of problems with the property that if one problem can be solved in o (n) time per

operation, then all the problems can be solved in o (n) time per operation. Examples of

these problems include acceptance by a linear-time Turing machine, the Boolean circuit

evaluation problem, and the depth-first search numbering of a graph. These prohlern,

seem to have no better on-line solution than simply running a linear-time off-line algo-

rithm whenever the input instance changes. One can ask whether bridge-connectivity and

biconnectivity are complete dynamic problems.



References

[1] B. Awerbuch and Y. Shiloach, "New connectivity and MSF algorithms for shuffle-
exchange network an. M," IEEE Trans. on Computers C-36 (1987), pp.
1258-1263.

[2] N. Blum, "On the s'-igle-operation worst-case time complexity of the disjoint set
union problem," SIAM J. Comput. 15 (1986), pp. 1021-1024.

[3] G. A. Cheston, "Incremental algorithms in graph theory," Tech. Rep. No. 91 (PhD.
Diss.), Dept. of Computer Science, University of Toronto, (1976).

[4] G. Di Bat~ista and R Tamassia. "On-Line Planarity Testing," Tech. Rep. No. CS-
89-31, Dept. of Computer Science. Brown University (1989).

[5] S. Even and Y. Shiloach, "On-line edge deletion," J. Assoc. Comp. M, '1. 28
(1981), pp. 1-4.

[6] M. L. Fredman and M. E. Saks, "The Cell Probe Complexity of Dynamic Data
Structur-s,' Proc " ACM Symposium on Theory of Computing, Seattle, Wash-
ington (May 1989). 45-354.

[7] G. N. Frederickson, "On-line updating of minimum spanning trees," SIAM J. Com-
puting 14 (1985), pp. 781-798.

[8] D. E. Knuth, The Art of Computer Programming. Vol. 1, Fundamental Algorithms,
Addison-Wesley, Reading, MA, 1968.

[9] J. Hopcroft and R. E. Tarjan, "Algorithm 447: Efficient algorithms for graph mani-
pulation," Comm. ACM 16 (1973), 372-378.

[10] J. Hopcroft and R. E. Tarjan, "Dividing a graph into triconnected components.
SIAM J. Computing 2:3 (1973).

[111 R. Karp and V. Ramachandran, "Parallel Algorithms for Shared Memorv
Ma- nes," Tech. Rep. No. CSD 88/408, Dept. of Computer Science, U.C. Berke-
ley 988). (To appear in Handbook of Theoretical Computer Science, North-
Holland.)

[121 J. H. Reif, "A topol .:a] approach to dynamic graph connectivity,'" Ir, mi. Pro-
cess. Lett. 25 (1987), pp. 65-70.

[13] A. Schonhage, "Storage modification machines," SIAM J. Comput. 9 (1980), pp.
490-508.

[14] D. D. Sleator and R. E. Tarjan, "A data structure for dynamic trees," J. Comput.
Sys. Sci 26 (1983), pp. 362-391.

[15] D. D. Sleator and P. E. Tarjan, "Self-adjusting binary search trees," J. Assoc, C(,,n-
put. Mach. 32 (1985), V ()52-686.



-40-

[16] R. E. Tarjan, "A class of algorithms which require nonlinear time to maintain dis-
joint sets," J. Comput. Sys. Sci. 18 (1979), pp. 110-127

[17] _ , "Amortized computational complexity," SIAM J. Alg. Disc. Meth. 6
(1985), pp. 306-318.

[18] -_, Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, 1983.

[19] _ , "Depth first search and linear graph algorithms," SIAM J. Computing 1
(1972), pp. 146-160.

[20] _ , "Efficiency of a good but not linear set union algorithm," J. Assoc. Comput.
Mach. 22 (1975), 215-225.

[21] R. E. Tajan and J. van Leeuwen, "Worst-case analysis of set union algorithms," J.
Assoc. Comput. Mach. 31 (1984), pp. 245-28 1.

[22] R. E. Tarjan and U. Vishkin, "An efficient parallel biconnectivity algorithm,"
SIAMJ. Computing 14 (1985), pp. 862-874.

123] J. Westbrook and R. E. Tarjan, "Amortized analysis of algorithms for set union
with backtracking," SIAMJ. Computing 18 (1989) pp 1-11.

[24] A. C. Yao, "Should tables be sorted?" J. Assoc. Comput. Mach. 28 (1981), 615-
628.


